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Abstract: Long-distance commercial vehicles are predestined for automated driving due to their high performance and 

long monotonous routes. Automation offers the prospect of improved road safety, increased fuel efficiency, optimised 

vehicle utilisation, higher driver productivity and lower freight costs. Even if the widespread use of full automation is 

not imminent, the vision of accident-free driving accelerates the further development of driver assistance functions to 

autonomous vehicle stages on the global market. The status quo evaluation refers to large-scale verification as one of 

the decisive challenges for the economical, reliable and safe use of automated driving functions in truck series devel-

opment. In this scheme, the evaluation of software releases must be carried out in different phases up to the Start of 

Production (SoP) to provide an argument that the residual risk is below an acceptable level. In driving simulator tests, 

various system concepts of a truck series are first evaluated. The verification and validation strategy then performs 

X-in-the-Loop tests, proving grounds and long-term endurance tests. Finally, homologation meets the market-specific 

type-approval requirements based on the evidence collected during development. This paper summarises previous 

works dealing with the large-scale verification requirements and challenges of intelligent transportation systems. 

The basis of large-scale verification is presented, including the verification and validation procedures commonly used in 

large-scale verification schemes. The criteria of test completion are specified for assessing the performance of automat-

ed driving functions. The quality measures are presented to achieve sufficient reliability within the software quality 

management process. The several possible topics for future research are identified. 
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1. Introduction 

Long-distance commercial vehicles are vehicles designed to create economic value. They are highly specialised in 

fulfilling specific tasks and are primarily controlled by economic efficiency. Commercial vehicles are characterised by a 

large number of product ranges and models with tractors, semi-trailers, or trailer combinations. The legislators in large 

regions regulate the concepts and functions of commercial vehicles up to and including a particular truck system. The 

current challenges are to improve the use of existing infrastructure, enhance the utilisation and combination of assis-

tance functions and make the truck driver profession more attractive
[1]

. 

1.1 Motivation 

Freight traffic is growing worldwide and is the dominant means of transport. According to the traffic forecast for 

2030, road freight transport performance in Germany will increase by 38% compared with the level of 2010
1
. 

Long-distance vehicle accidents often have serious consequences such as personal injury and death, as well as consid-

erable financial costs and environmental risks. Therefore, the road safety of commercial vehicles is an essential aspect 
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of society. The number of truck accidents involving seriously injured road users has fallen by more than 45.8% between 

1992 and 2014. Although the volume of truck traffic in the same period has increased by 85.3%, the number of people 

who have died at these accidents has decreased by more than 59.7 %
2
, as illustrated in Figure 1. The most frequent 

crash with heavy trucks is the rear-ended collision with a passenger car, in which the severity of the accident for the 

passenger car is considerably worse. For this reason, the European Commission has started to equip all common trucks 

with automatic emergency braking systems with a gross vehicle weight of more eight tonnes. The only exceptions are 

off-road vehicles, steel-sprung heavy-duty vehicles and trucks with more than three axles. 

 

The development of automation in civil aviation to meet the increased safety require- ments can be seen as an in-

dication of the challenges of the same expansion in trucking. Both sectors focus on the commercialisation of freight and 

passenger transport in a scal- able environment. Statistical studies on the number of accidents in civil aviation confirm a 

significant and sustained decline in accident rates worldwide, although the number of aircraft has increased. The study 

of statistics on the life cycle of each generation of jets shows that the lowest fatal accident rate of first-generation jets 

was around 3.0 accidents per million flights. For the second generation, it was about 0.7, which corresponds to an 80% 

reduction in fatal accidents. By comparison, third-generation jets achieve about 0.2 accidents per million flights. Finally, 

fourth generation jets have the lowest accident rate, with a stable average of about 0.1 fatal accidents per million flights, 

which represents a further 50% reduction compared to the third generation, as depicted in Figure 2-Figure 3. 

 
 

1The 2030 Federal Transport Infrastructure Plan 

2German federal statistics office, accidents and mileage 

3 Airbus- A Statistical Analysis of Commercial Aviation Accidents 1958-2016 
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1.1 Problem definition 

The conversion from driver assistance systems of levels 0, 1 and 2 to higher levels of au- tomation in accordance 

with SAE J3016 represents a new challenge for the verification of autonomous trucks. The main difference is that driver 

assistance can intervene unintend- edly. The driver can override the side effects of the assistance system at any time if 

there are system limits
[2]

. Their functions are therefore designed to be controllable, but this can reduce their benefits. 

The controllability of system interventions and the effectiveness in the field with minimisation of undesired conse-

quences are therefore decisive for the series development of these drive functions. Accordingly, Systems Engineering 

requires state-of-the-art evaluation procedures to verify and validate these systems. Long-term endurance tests are car-

ried out to define thresholds for intervening systems based on the collected data. On the one hand, trigger algorithms 

can be optimised to minimise the frequency and impact of false-triggered interventions, and on the other hand to max-

imise the number of legitimate responses. Nevertheless, automated driving requires that a system exploits the limits of 

dynamic driving tasks as required and masters most environmental conditions controlled by a human driver. The new 

ISO26262 standard regulates the functional safety of electrical/electronic (E/E) systems in heavy commercial vehicles. 

However, the safety standard is limited to avoiding potentially safety-critical situations caused by undetected random 

hardware failures and dangerous systematic failures. Safety violations due to technological and system-technical defi-

ciencies remain outside the scope of ISO26262(e.g. insufficient robustness to environmental conditions, inadequate 

training data with machine learning algorithms, uncertainty issues with perception sensors, etc.). In particular, automat-

ed driving without driver monitoring can also lead to potential safety-critical situations resulting from deficiencies in 

the estimation, interpretation and perception processes. The primary question is therefore how to verify automated driv-

ing efficiently and adequately for the required test completion criteria. 

1.2 Contribution 

A statistical method for predicting the required test distance is being elaborated to demon- strate the safety of au-

tomated trucks on the basis of fatalities and injuries. Accident-based statistical safety assessment is an unresolved chal-

lenge for the developers of these tech- nologies when physical driving testing have to prove safety during the develop-

ment phase. Despite the fact that the uncertainties of machine learning remain before au- tomated driving is released for 

widespread use, it is essential to develop innovative methods that complement physical driving experiments. This paper 

describes a modular framework that suggests the verification process of automated truck driving. In addition, the clus-

ter-in-the-loop framework offers an evaluation of perception sensors, decision al- gorithms and functional robustness. 

The structure employed utilises a backend database that is filled with catalogs of relevant driving scenarios from various 

sources of field- based observations. In this scheme, the processing chain includes clustering multivariate time series 

data sets and locating critical driving situations to identify and assign the necessary test cases for different appropriate 

test environments. These new test cases then complement the existing test cases, which were developed from expert 

knowledge in adaptive test coverage manner. The platform-independent mechanism is intended to provide a consistent 

scenario description format for the various test environments. The proposed framework therefore contributes to a poten-

tial trade-off between the efficiency and effectiveness criteria of a scenario-based test concept
[3]

. 

1.3 Structure of the paper 

The paper is structured as follows: Section 2 provides a brief overview of related work. Section 3 explains the 

proposed methodology and details of the framework implementa- tion. Finally, quantitative results are presented in sec-

tion 4 and the performance of the overall system is evaluated. The paper concludes with a summary in Section 5. 

2. Related work 

Passive and active safety systems differ from their evaluation methods. A standard eval- uation approach has been 

developed for passive safety systems to verify their behaviour with an appropriate number of crash test cases under cer-

tain worst-case conditions. In contrast, the safeguarding of active safety systems poses a number of challenges with 

regard to the variety of relevant scenarios and environmental conditions, the complexity of the systems, the variability 
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of driver behaviour and functional deficiencies. 

2.1 Towards autonomous trucks 

Due to the high mileage and long monotonous distances of long-haul trucks, various busi- ness cases for coopera-

tive automated driving are demonstrated, such as truck platooning. Despite the fact that the widespread use of full au-

tomation is not imminent, the vision of accident-free driving expedites the further development of driver assistance 

functions to evolutionary autonomy stages on the global market. These stages are expected to overlap and are not se-

quentially available on the market. Despite strong support of industry and academia, questions about their business cas-

es, ethical dilemmas, legal liability and safety frequently arise.  For example, a further adaptation of the Vienna Con-

vention on Road Traffic is necessary with regard to the provision of an automated steering sys-tem, which is prohibited 

in the UN-ECE R79 for use above 10 km/h
[4]

. The traditional method of sense-plan-act robot control provides a func-

tional view of the data flow in the sensor and control system of an autonomous truck. The sensor system is responsible 

for understanding the current state of the environment
[5]

. While the planning part is responsible for finding out what 

the best next step is, the acting part is responsible for implementing the plan. A truck equipped with automated driving 

can be identified as a Cyber-Physical Vehicle System (CPVS) whose driving functions enable the intelligent handling of 

dynamic traffic situations in an extremely safety-critical environment, as illustrated in figure 3. In order to identify the 

challenges of proof of safety for automated driving functions, we propose four such evolutionary stages of automated 

truck driving adapted to the OICA/SAE standard J3016 automation levels
[6]

. Each of these stages is identified as fol-

lows: 

 

- The first stage can be divided into three sub-categories of driver assistance systems. Functional information and 

warning systems are the first sub-category in which the driver is fully engaged (e.g. traffic sign recognition, lane depar-

ture warning, sideguard assist, etc.). The second sub-category concentrates on functional intervening and continuously 

assisting driver assistance systems (e.g. active brake assist, adaptive cruise control etc.). The third sub-category con-

cerns with functional combinations and multiple interacting driver assistance systems (e.g. active drive assist, highway 
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assist, etc.). All of these systems do not learn during operation and perform limited tasks in a clearly defined context. 

Cooperation is therefore limited to the exchange of information on the system context. The verification and validation 

strategy aims to ensure the functional correctness and functional safety of the system. Critical driving situations due to 

E/E system failures can be addressed within the framework of ISO26262. The Safety of the Intended Function-ality 

(SOTIF) regulates the absence of unreasonable risks due to hazards arising from performance limitations and insuffi-

cient situational awareness. 

- The second stage comprises task-oriented conditional automation systems (e.g. highway pilot) in which the sys-

tem operates in a sequence of manageable situations. While the system does not learn during operation, it optimises its 

trajectories during the control process according to defined objectives such as time or other resources. The cooperation 

with other systems is therefore limited to the exchange of information about the system context and the system itself. 

Handling uncertain information in fail-operational mode is essential for predicting and interpreting situations because 

environmental awareness is not 100% reliable. On this basis, the functional integrity of the system must be ensured with 

the verification and validation strategy. 

- The second stage comprises task-oriented conditional automation systems (e.g. highway pilot) in which the sys-

tem operates in a sequence of manageable situations. While the system does not learn during operation, it optimises its 

trajectories during the control process according to defined objectives such as time or other resources. The cooperation 

with other systems is therefore limited to the exchange of information about the system context and the system itself. 

Handling uncertain information in fail-operational mode is essential for predicting and interpreting situations because 

environmental awareness is not 100% reliable. On this basis, the functional integrity of the system must be ensured with 

the verification and validation strategy. 

-The third stage involves collaborative high automation systems that collaborate with other systems to perform 

their tasks (e.g. truck platooning, etc.). They negoti-ate their objectives, plans and actions with other systems and adapt 

their behaviour to the negotiated procedure. Since the system boundary changes dynamically due to the collaborative 

relationship, mechanisms for distributed planning and coordi-nation of interpretations are required to ensure safe system 

functionality. Therefore, their verification and validation strategy focuses on the structural integrity. 

- The fourth stage includes multi-agent autopoietic full automation by autonomously expanding their perception, 

situational awareness and actions. The ability of unsupervised learning during operation at all levels of perception and 

action is the main feature of this system class. For this purpose, a concept of semantic integrity is necessary in order to 

safeguard any possible expansion. 
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2.2 Deficiencies in environment sensing 

The perception and situation prediction sensors have different measurement principles, which can be classified as 

follows: 

-Monocular vision sensors measure the incident light using an optical system. However, no depth or speed infor-

mation can be measured directly, whereby the three-dimensional world is projected onto the two-dimensional image. 

The recog-nised object features are mapped to a vector representing an object hypothesis in the state space of the used 

classifier. 

- Stereo vision sensors consist of an arrangement of two monocular cameras with a certain distance (base width) to 

each other and measure an environmental detail from different perspectives. The measurements are carried out syn-

chronously, whereby a depth estimation is generated in the two images by comparing the displacement (disparity) of 

individual pixels or patterns. In addition, the distance accuracy is limited by the resolution, especially at long distances. 

-Automotive RADAR (RAdio Detection And Ranging) sensors transmit and receive radio waves to determine the 

speed, range and angle of objects. Its strengths occupy in an extended longitudinal range, an optimal accuracy of the 

range rate with weather independence. Radar sensors, however, can poorly resolve closely spaced objects over long 

distances. 

-Automotive LiDAR (LIght Detection And Ranging) sensors are based on an optical measurement principle to lo-

cate and measure the distance of objects in space. LiDAR sensors typically use the time of flight principle for distance 

measurement, where a laser pulse is emitted and the elapsed time is measured until the reflected signal is received again. 

The time delay between transmit and receive is directly proportional to the distance due to the proportionality between 

the time of flight and distance. 

-e-Horizon (electronic Horizon) sensors employ the digital map data and GPS sensors to predict the driving route. 

The GPS sensor determines the vehicle position in world coordinates. The map matching transforms this place into map 

coordinates and assigns it to a specific road on the map. Subsequently, the most probable path extracts and processes the 

relevant map characteristics along the most likely future route using prediction algorithms. The e-Horizon data includes 

vehicle position data and road segment attributes such as road geometry, road class, number of lanes and speed limits. 
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Since automated driving of trucks depends on environmental perception, safety vio-lations may be caused by limi-

tations due to physical or technical constraints on the intended functioning of a system. In addition, object recognition 

and classification are primarily performed by machine learning techniques to extract relevant features in an unstructured 

operational context
[8]

. Although machine learning paradigms offer a promising perceptual performance, high values of 

false-negative and false-positive rates can have critical safety consequences within the overall system
[9]

. Therefore, the 

performance evaluation of the environment sensing should be established to provide a sufficiently safe level of residual 

risk associated with functional deficiencies in machine learning functions
[10]

. Accordingly, the various sensors must be 

verified not only in terms of failure rates, but also in terms of possible causes of technical deficiencies in machine 

learning. The evaluation criteria of S1 perception sensor contain false positive and false negative rates (P 1 and P 2 re-

spectively) by implying some assumptions about the system context. The sensor detects pedestrian objects from a lon-

gitudinal distance of P 3 with a lateral distance P 4 from the longitudinal axis of the truck. The parameters P 1,P 2,P 3 

and P 4 also refer to the system parameters (e.g. ego vehicle speed). Robust-ness in real traffic can be achieved by the 

intelligent fusion of sensor data and reasonable system design. The possible uncertainties for different perception sen-

sors are classified as shown in Table 3. 
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2.3 Safety of the Intended Functionality 

ISO 26262 has been established as the state of the art in the development of safety-relevant systems in passenger 

cars
[11]

. ISO26262-3 includes hazard analysis and risk assessment to determine the required Automotive Safety Integrity 

Level (ASIL) and to assess the potential risks of E/E malfunctions that may violate the safety goals. For the analytical 

approach, a risk R can be described as a function F of three impact factors: severity S, the probability of exposure E and 

controllability C. 

 

The hazard classification defines each potentially hazardous driving situation according to the following classes: 

severity (S0-S3), exposure probability (E0-E4), controllability (C0-C3). This determination follows one of five catego-

ries to specify the risk and its risk reduction requirements, where ASIL D is the highest and Quality Management (QM) 

the lowest risk reduction class (ISO/WD 26262-1). For example, a system specified for the implementation a driv-

er-assisted truck platooning may exhibit undesired behaviour due to misclassification of objects and require driver in-

tervention. Controllability is therefore the probability that the driver can control driving situations, such as automated 

driving function, system limits and system failures. The processes and methods for assessing the controllability of unin-

tended driver assistance reactions are specified in the Code of Practice. With automated driving without driver interven-

tion, the ASIL determination can be assigned to the level [C3] of controllability[< 90%], where the intended function is 

difficult to control or uncontrollable, as illustrated in table 4
[12]

. 

 

Despite the updating of the scope of the ISO26262 standard for the inclusion of heavy-duty trucks in Edition 2, its 

safety goals mainly address undetected random hardware failures of the system components and systematic failures. 

Assuming that the E/E system malfunctions are managed using ISO26262, the safety violations, that may be caused by 

the environmental perception sensors remain outside the scope. Redundancy, diversity and functional restrictions can 

compensate system limitations. The Safety of Intended Functionality (SOTIF) ISO/WD PAS 21448 approach is cur-

rently under development and serves as an extension schema to specify the intended function in such a way that it is 

robust and safe enough to take into account the variations in sensor inputs and the different environmental conditions. 

Therefore, new verification and validation measures are needed to assess unintended system behaviour due to techno-

logical and systemic deficiencies. At the same time, SOTIF activities complement ISO 26262 with its focus on driver 

assistance rather than automated driving without driver engagement. 

3. Dilemmas of automated driving assessment 

3.1 Statistical proof of safety 

The validation process begins with the selection of a validation target, which is calculated by the system use case, 

the crash statistics and a safety margin. For a particular use case, human drivers experience an average number of kilo-

metres between events and the system owner defines a certain safety margin. The stopping rule assumes that the failure 
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rate has a binomial distribution. It can be shown that the system has a failure rate greater than or equal to the benchmark 

reference with a certain confidence level. Therefore, the validation distance required to provide statistical proof of the 

safety of an automated driving system can be calculated on the basis of a benchmark reference for the expected inter-

val between accidents of certain severity. The total fatality rate in Germany caused by trucks in 2015 was 787 fatalities, 

totaling 58.934 billion kilometres. According to the binomial distribution, an autonomous vehicle with the reliability 

with m failures during the travel distance x with confidence level C is: 

 

If the failure rate of a truck is ν, then the reliability γ is (1 − ν) and can be interpreted as the probability that is no 

failure in the route driven. A hypothesis about the scenario ”no failures driving” can be used to estimate a lower limit 

for the number of failure-free kilometres n to determine the reliability of autonomous trucks with a confidence level C. 

This determines the reliability that can be claimed for a certain number of failure-free kilometres at a particular confi-

dence level. 

 

The required test distance x without failures is defined for a given confidence C and reliability γ, as represented in 

equation 4. 

 

substituting ν with  
787

58.934∗109 = 1.34 ∗ 10−8and confidence level C with 95%. 

 

 

The required test distance is approximately 220 million km. Figure 4 represents the failure rate factor  
ν𝐴𝐷

ν𝐻𝐷
 , 

where ν𝐴𝐷is the failure rate of an automated driving system and ν𝐻𝐷 is the benchmark failure rate of human driver. 

For today’s trucks, there is no necessity for such long validation distances, at which the controllability of the driver pro-

vides the necessary proof of safety. Nevertheless, the 2 million kilometres used to validate current driver assistance sys-

tems are sufficient to prove a fatality rate of (ς(2∗106km)=25.5) times that of humans with 50% confidence, in case of a 

fully automated truck. In order to prove that an autonomous truck has a failure rate similar to that of humans in 2015 as 

a benchmark failure rate and assuming that the truck has no failure (κ = 0) during endurance testing, with 99% confi-

dence is approximately 340 million kilometres are needed. This analysis applies to failure-free kilometres. For this rea-

son, it is economically impossible to demonstrate the safety of automated driving systems with widespread usage statis-

tically prior to introduction (approval trap). 
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3.2 Distance between critical events 

While critical traffic events are typically rare and not reproducible, early identification of functional deficiencies is 

essential for automated driving. Despite the difficulty of predicting a priori all possible operating scenarios, the cover-

age of critical driving scenarios needs to be adequately investigated. Recent research suggests the hypothesis of Poisson 

distribution to calculate the required validation distance with the following assumptions. On the one hand, the route 

used is representative; on the second hand, critical events occur independently of each other within a random process. In 

the equation 6, k corresponds to the number of accident events and  λ  is the predicted distance at which this event 

occurs at a given confidence level. 

 

The mean time between failure (MTBF) can be determined at a given confidence level using the hypothesis of the 

Chi-square distribution according to ISO 26262. Accordingly, an exponential failure distribution with a constant failure 

rate is assumed. Regarding the safeguarding of driver assistance systems, there are no legal requirements for the valida-

tion distance. Since unintended reactions are rare events, a Chi-square distribution can be applied. If no critical event 

occurs at a sample distance with a required failure rate of one million kilometres each, the necessary validation requires 

around 3 million kilometres. In this case, no event should occur during the driven interval in order to argue the residual 

risk with a confidence level of 95%. The required mileage will increase if more events occur during validation 

(e.g. 𝑥(k=1)=4.8 ∗ 106 km, x(k=2)=6.3 ∗ 106 km, x(k=3)=7.8 ∗ 106 km, etc 

 

In practice, the validation distance does not play the central role, but the variance of test conditions as much as 

possible (e.g. different weather conditions, time of day, road conditions, traffic conditions, pedestrian conditions, etc.) to 

cover rare operating situations. Therefore, route diversity in physical road tests is a significant measure of the probabil-

ity distribution. Alternative safety assessment methods are therefore required, where the validation distance in long-term 

endurance tests will increase dramatically by using the current test concepts for automated driving without driver en-

gagement. 

3.3 Evidences of adaptive test coverage 

User-oriented assessment procedures are the current de-facto standard for the validation of driver assistance func-

tions. These methods provide system performance metrics, e.g. confusion matrices for all possible system reactions with 

classification as intended functional interventions or unintended side effects. In this scheme, the evaluation of software 

releases must be carried out in various phases up to the Start of Production (SoP). Initially by driving simulators, fol-

lowed by X-in-the-Loop (XiL) technologies, proving grounds and long-term endurance tests. An optimised test strategy 

demands a selection of the necessary test method (simulation/laboratory, proving ground and field testing) for different 
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scenarios and their interaction with other test methods
[13]

. Consequently, new innovative approaches need to be estab-

lished, especially in simulation and laboratories. Efficient testing thus helps to achieve high development quality of new 

market-ready products in a short time span and at low cost. It will not be viable to prove safety of the required level of 

system performance through driving test hours alone during the development phase. Evidence should be provided by 

scenario coverage of the tests combined with statistical extrapolation techniques, field-based observations, component 

and integration tests including simulation as well as reasonable safety measures. The Goal Structuring Notation is used 

to highlight the verification methods for automated truck driving and explain main lines of the argumentation of adap-

tive test coverage, as illustrated in figure 6
[14]

. 

 

The following list contains typical context elements that are relevant for the adaptive verification case. 

-Context Element 1 - definition of automated driving stages with regard to their required safety integrity: 

-Context Element 2 - definition of functional requirements on the automated driving functions: 

-Context Element 3 - definition of the system context including its quality gate within the series development: 

-Context Element 4 - definition of the effectivity and efficiency criteria of the scenario-based test concept require-

ments: 

-Context Element 5 - definition of field-based observations using clustering of multivariate time series analysis: 

-Context Element 6 - definition of acceptable pass/fail criteria using criticality matrix: 

The adaptive verification strategy can be described as follows: 

Strategy 1 - argument on the required successful test completion through adaptive test coverage: 

The Goal 1 forms the top-level claim and the sub-goals within the adaptive verification case are defined as follows: 

-Goal 1 - residual risk associated with individual hazards in the automated driving is acceptable: 

-Goal 2 - coverage of functional requirements: 

-Goal 3 - coverage of algorithmic-based software structures: 

-Goal 4 - coverage of system integration and variance: 
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-Goal 5 - coverage of software performance: 

-Goal 6 - coverage of training dataset and uncertainties of machine learning pre-dictions: Autonomous vehicle 

technology typically involves some machine learn-ing, especially for object detection and classification. A driving func-

tion using non-deterministic algorithms (e.g. Bayesian estimators, neural networks, etc.) for object recognition is af-

fected by failures of a different nature to those defined within IS26262:2018. The requirements are not in the typical V 

format of a set of functional requirements for the system itself, but preferably in the form of a set of training data or a 

plan to collect the set of training data due to the black swan problem. The gathered data is then annotated for specific 

features to be learned (e.g. road boundaries, pedestrians, cars). If the annotation is a manual process, a check of the an-

notations is required. The annotated data is then used to determine parameters through training. The training result is 

then verified using pass/fail criteria, such as acceptable false positive and false negative rates. If the self-verification 

fails, the process can be restarted after more data is obtained. Uncertainty quantification can provide information that is 

employed in object plausibility within sensor fusion algorithms. Two types of uncertainties can be distinguished. Alea-

toric uncertainty covers noise that is inherent in the observation (e.g. sensor or motion noise). This uncertainty can-

not be reduced by increasing training data. In contrast, epistemic uncertainty has the effect that for a given input class, 

the system performs inconsistently within a particular range of error. False negatives (not detected objects), false posi-

tives (ghost objects) and misclassification issues can be tuned using coverage of training dataset. The performance of 

machine learning algorithms relies on the amount of training dataset. The statistically relevant spread of operational 

situations can ensure an adequate coverage during training for environmental perception tasks. 

- Goal 7 - coverage of critical driving scenarios: 

Possible types of evidence that can be formulated to argue the required successful test completion, as follows: 

-Evidence 1 - test results of Cluster-in-the-Loop tests and proving grounds: 
[15]

,
[16]

, 
[17]

. 

-Evidence 2 - test results of back-to-back tests: 

-Evidence 3 - test results of system integration tests and proving grounds: 

-Evidence 4 - test results of fault injections tests: 
[18]

. 

-Evidence 5 - run-time plausibility checks of open-loop regression tests: 
[19]

. 

-Evidence 6 - field-based observations of triggered-based field operational tests: 

Table 5 highlights the required systems engineering and verification techniques. The possible types of evidence 

that can be assigned by multiple test methods to achieve their test objectives and coverage criteria. 
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4. Big testing process 

The big testing process provides a set of scenarios from field-based observations as a complementary approach to 

the existing functional specifications. Therefore, the adaptive learning process identifies critical scenarios in large data 

sets to learn from the system experience in the field. As a result, the adaptive test coverage contributes a potential 

trade-off between efficiency and effectiveness for a scenario-based test concept. 

4.1 Verification of automated driving functions 

Due to the interaction of automated driving functions with the surrounding environment, testing becomes highly 

complex and verification cannot be realised using a single testing approach
[20]

. Figure 7 shows the differences between 

structure-, situation-based open-loop and scenario-based closed-loop testing over time. In the beginning, the scene block 

represents a snapshot of the environment, including the scenery, the dynamic elements and all actors and their relation-

ships. Consequently, the situation block provides a selection of a particular behaviour pattern for an individual trigger-

ing event. As a result, the scenario block offers a description of the temporal evolution between several scenes in a se-

quence of scenes. The test case contains a logical scenario with a set of parameters that are applied to its pass/fail crite-

ria as to whether a system is operating according to its intended functionality. Structure tests are executed to test the 

structure coverage of algorithmic-based software components, like particular software functions and parts of the code. 

As a next step, situation-based open-loop testing generates driving situations from the required behaviour and evaluates 

the behavioural response without feeding it back into future situations. If all test cases are passed successfully, scenar-

io-based testing is used to test the behaviour in a closed-loop setup. Scenario-based closed-loop testing specifies an en-

tire scenario in a test case. This includes a sequence of scenes, actions, events and goals for the driving function. 
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4.2 Big testing database 

Big Data tools and techniques provide the measurement system and database infras-tructure needed to record, store 

and access data for re-simulation capabilities and root cause analysis. Besides, triggering events are utilised as a com-

plementary information source for the discovery of critical driving scenarios experienced during long-term en-durance 

tests. The triggering event is a driving scenario with specific conditions, which serves as the initiator for a subsequent 

system reaction. For example, when an automatic emergency braking system incorrectly identifies a traffic sign as a 

preceding vehicle on a highway and leads to unintended braking. Therefore, the first step is logging and transmitting 

time series recordings of triggering events from the truck with its appropriate measurement system to the big data server. 

The second step is extracting and clustering of multivariate time-series data to provide them as a complementary infor-

mation source to different suitable test environments. The root cause analysis can be divided into three subcatego-

ries(clustering, regression and classification). Initially, the clustering splits triggering events into one of several cate-

gorical clusters. Then, the regression represents each group with its corresponding signal prototype. Also, the open-loop 

prototypes can be converted to closed-loop control data to synthesise various driving scenarios applied to the Clus-

ter-in-the-Loop test bench. In case of new triggering events, the classification maps them into one of the predefined 

categorical classes. Data from various sources (such as long-term endurance tests, accident databases, etc. ) are format-

ted into a standard form to apply a typical processing chain
[21]

. Based on these steps, performance indicators can be 

measured for scenario group characterisation can be measured to derive complementary test specifications, as shown in 

figure 8. The knowledge discovery process is applied to identify critical scenarios from field-based observations and 

verify automated driving functions effectively and efficiently. 
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The knowledge discovery process can be summarised with the following steps to identify the scenarios from 

field-based observations. 

4.3 Adaptive scenario-based test concept 

The resulting control and behavioral response are used to influence future scenes and by this implicitly future situ-

ations, as well. The ontology-based method is identified to extract a category of adequate and relevant scenarios for 

existing Field Operational Tests. It presents a concept for semantic representation of worst-case scenarios. These are 

to be obtained using data-mining techniques and consequently systematically transformed into requirement test cover-

age. The proposed concept aims to bridge the gap between knowledge- and data-driven approaches to enable continuous 

extensibility of experience in an adaptive test coverage manner, as demonstrated in Figure 9. 

5. Conclusions and future work 

Since it is not possible to guarantee absolute safety for automated trucks, one of the biggest challenge in automated 

truck driving is to argue for a reasonably low residual risk resulting from imperfections of the environmental perception 

sensors. Such arguments are not currently supported by the relevant safety norms. This paper proposed applying an 

adaptive verification approach to determine how such an argument could be formed by decomposing the goals. The 

adaptive verification would be completed by providing systematically diverse evidence to support the claim that re-

quired successful test comple-tion through adaptive test coverage. The structure presented in this paper raises several 

issues that require substantial future research activities. Further research will also include the application of clustering 

of multivariate time-series data. These activities have to be integrated into a system engineering approach that supports 

the structure of the adaptive verification. This technical research work needs to be complemented by activities within 

industry to form a consensus on risk evaluation and acceptable argumentation structures that would feed into future 

standards and code of practice guidelines. 
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