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Abstract: Advancements in remote sensing (RS) technology have highlighted the potential of jointly classifying Hyperspectral Images (HSI) 

and Light Detection and Ranging (LiDAR) data, leveraging the rich spectral information of HSI and the precise 3D structural details of Li-

DAR. While this combination improves classification accuracy, it presents challenges due to differences in data dimensions and semantic 

levels. Existing deep learning approaches often struggle to effectively extract features and capture interactions between these heterogeneous 

sources, and traditional CNNs suffer from limited receptive fields and detail loss in complex multi-scale scenarios. To address these issues, 

we propose DMTCANet, a novel joint classification network that combines a dual-branch multi-scale CNN with token cross-attention (TCA) 

fusion. The network incorporates a multi-scale hybrid convolution module to process HSI and LiDAR data, expanding the receptive field and 

capturing local and global information. A TCA fusion encoder further enhances deep interactions between the two data modalities, overcom-

ing the limitations of insufficient feature integration. Experimental results on Trento, Houston2013, and MUUFL datasets demonstrate the 

effectiveness of DMTCANet, outperforming existing methods.
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1. Introduction
With the development of remote sensing technology, hyperspectral images (HSI) have important applications in the classification of 

land features due to their rich spectral information. However, the use of HSI alone is susceptible to the limitations of high-dimensional redun-

dancy, noise interference, and insufficient spatial information, which affect the classification accuracy. LiDAR data, on the other hand, com-

pensates for the spatial structure deficiencies of HSI by providing accurate three-dimensional spatial information, but its spectral feature ex-

pression is weak [1]. To overcome their respective limitations, joint classification of HSI and LiDAR can make full use of their complementary 

advantages and significantly improve the classification results. However, existing methods still have deficiencies in mining multi-modal deep 

interactive information. Inspired by related research, this paper proposes a joint classification network DMTCANet based on a dual-branch 

multi-scale CNN and a cross-tag attention (TCA) fusion to comprehensively mine the multi-source features of HSI and LiDAR and their 

deep associations, thereby improving the classification accuracy [2]. Its main contributions include: 1) the DMTCANet framework is designed 

to improve classification performance through multi-scale feature extraction and deep interaction fusion; 2) a multi-scale hybrid convolution 

module is proposed to expand the receptive field and capture global and local information using multi-size convolution kernels; 3) a TCA 

fusion encoder is introduced to enhance the deep correlation between HSI and LiDAR and significantly improve the problem of insufficient 

information interaction.

2. Proposed method
This section provides a detailed explanation of the classification framework of DMTCANet, as shown in Fig.1, aiming to demonstrate 

its efficiency and practicality.
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Fig.1:  The model structure of our proposed DMTCANet.

2.1 HSI and LiDAR Data Preprocessing

Given raw HSI data  and corresponding LiDAR data , where B×C is the spatial dimension and D is the number of 

spectral bands, PCA is applied to reduce the spectral dimensionality of the HSI data from D to b, resulting in . Then, 3D patches 

of size S×S are extracted from each pixel of the reduced HSI data, forming small patch cubes , while 2D patches of size S×S are 

extracted from the LiDAR data, forming small patches .

2.2 Multi-scale Spectral-Spatial Feature Extraction

For HSI data, first, the preprocessed cube XHP is passed through the spectral-spatial feature encoder (SSFE) to extract joint spectral 

and spatial features, denoted as Fssf. Next, these features are further processed by the spatial feature encoder (SFE) to extract spatial features, 

denoted as Fsf
[4]. Finally, the maximum pooling operation (MP) is employed for generate the final spectral-spatial features MHssf. For LiDAR 

data, first, the preprocessed cube XLP is passed through two layers of SFE to extract spatial features, denoted as Fsf. Then, MP is utilized to 

extract the elevation features from LiDAR, denoted as MLsf. The features MHssf and MLsf can be expressed as:

				    (1)

				    (2)

Additionally, the module integrates HSI and LiDAR data through a weighted fusion formula to form multimodal features, denoted as M. 

In addition to enhancing the model’s classification capability for complex scenes, this approach also effectively lowers computational cost by 

utilizing spectral channel grouping and batch normalization (BN). The multimodal feature M can be determined as:

			   (3)
Where  represents the weighting coefficient, which can be modified.

2.3 Tokenization

To efficiently embed the features from HSI and LiDAR into the TCA network, tokenization is performed. The feature maps of HSI 

and LiDAR are flattened into vectors:  and , where  and  represent the height, 

width, and channels of the HSI and LiDAR feature maps, respectively [5]. The feature tokens are  and , where 

 and  are the number of tokens. By multiplying the input features with the learnable weights  and , tokenization is performed to 

extract the key features. For the flattened features  and ，and  can be given by:

			   (4)

			   (5)
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Where XHSI Wa and XLiDAR Wb represent 1×1 dot product operations. After this step, the obtained features are transposed, and the trans-

posed feature groups are denoted as AHSI and ALiDAR. Finally, AHSI and ALiDAR are multiplied with XHSI and XLiDAR respectively to obtain the 

final feature tokens THSI and TLiDAR.

2.4 TCA Fusion Encoder

In RS data, effective feature fusion is crucial for successfully constructing multimodal feature representations. This paper introduces a 

TCA fusion encoder to process HSI and LiDAR feature information. The TCA module utilizes the CLS token from one modality as a bridge 

to facilitate the exchange of information with tokens from the other modality, projecting the exchanged information back into the original 

feature tokens.

Taking HSI feature tokens as an example, its CLS token is merged with LiDAR feature tokens to align dimensions. The specific pro-

cess is as follows:

				    (6)

			   (7)

Where tcls HSI has a dimension of 1×1×ZH and t'clsHSI matches the dimension of the LiDAR CLS token, 1 ×zL. The new feature token TtcaH-

SI replaces the LiDAR CLS token with the transformed HSI CLS token.

Subsequently, the TCA module interacts using t'clsHSI as the query item. The mathematical formulation of this process is shown below.

	 (8)

		  (9)

Where  are learnable weight matrices, d denotes the new embedding dimension size, and m is the number of atten-

tion heads. This method reduces complexity compared to traditional attention mechanisms.

Finally, combining layer normalization (LN) and residual connections, the output of the TCA module ToutHSI can be defined as:

			   (10)

				    (11)

			   (12)
Similar to HSI, LiDAR features also undergo the same processing flow, with the output being Tout_LiDAR, where the learnable CLS token 

is defined as Ycls_LiDAR.

2.5 MLP Layer Classification

After the TCA module, classification tokens  and  are passed through a multilayer perceptron (MLP) with two linear layers and GELU 

activations. The final layer applies Softmax to compute the classification probabilities, where the output dimension matches the number of 

classes. The two resulting probability vectors are summed, and the class with the highest probability is selected as the classification result for 

the pixel.

3. Experiments And Analysis

3.1 Dataset Description

To evaluate the proposed model’s effectiveness and underlying rationale, experiments were carried out on three publicly available data-

sets, with a thorough discussion and analysis of the results. Table 1 presents detailed information about the three datasets.
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Table I:  A detailed description of the three datasets: Trento, Houston2013, and MUUFL.

Description Sensor Spectral 
Bands

Total Training 
Samples

Total Testing 
Samples Image Size (pixels) Spatial Size (m)

Trento
HSI(AISA Eagle) 63

819 29395 600166 1LiDAR(Optech ALTM 
3100EA) 1

Houston2013
HSI (NCALM) 144

2832 12197 3491905 2.5
LiDAR (NCALM) 1

MUUFL
HSI (AISA Eagle) 72

1650 52037 325220 1LiDAR (Optech ALTM 
3100EA) 1

3.2 Parameter Analysis

(1) Patch Size: The patch size determines the local image region considered by the model, affecting its ability to perceive texture, 

shape, and detailed information. Smaller patch sizes capture finer local features but may miss larger patterns, while larger patches capture 

broader context but may lose fine details. To explore its impact, we tested patch sizes of 7, 9, 11, 13, and 15. As shown in Fig. 2(a), the opti-

mal patch size is 11 for all three datasets.

(2) Learning Rate: The learning rate determines the size of parameter adjustments, influencing both the speed and stability of the con-

vergence process. A lower learning rate allows finer exploration but increases training time, while a higher rate accelerates training but risks 

missing the optimal solution. We tested learning rates of 0.0001, 0.0003, 0.0005, 0.001, and 0.005. As shown in Fig. 2(b), a learning rate of 

0.001 gives the best performance across all datasets.

 
(a)                                                                                                                  (b)

Fig.2:  The effect of various parameters on the three datasets: (a) patch size, (b) learning rate.

3.3 Classification Results and Analysis

To demonstrate the effectiveness and robustness of the proposed network architecture, experiments were conducted to compare it with 

several well-known methods, such as CCRNet [8], CoupledCNN [9], MHST [7], EndNet [10], HCT [6], and FusAtNet [3]. The implementation of 

these methods followed the parameter configurations specified in their original papers.

Table II-III and Fig. 3-4, present the classification results and maps for various models on the Houston2013, and MUUFL datasets. For 

Houston2013, DMTCANet achieved 99.92%, significantly outperforming CCRNet (95.28%) and MHST (96.19%), with clearer maps and 

better classification in complex regions. On MUUFL, DMTCANet obtained an OA of 90.72%, surpassing MHST (88.71%) and CCRNet 

(83.12%), showing precise object boundaries and minimal confusion. These results highlight the superior performance and classification 

quality of DMTCANet across all datasets.
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Table II:  The classification accuracy (%) of different methods on the Houston2013 dataset.
No. CCRNet CoupledCNN MHST EndNet HCT FusAtNet DMTCANet
1 93.92 83.06 98.05 83.09 82.86 83.10 99.81
2 94.46 82.79 98.22 79.45 83.23 96.05 100
3 99.82 94.51 99.26 99.40 93.06 100 99.80
4 99.52 93.24 99.59 91.86 95.64 93.09 98.76
5 99.69 99.75 99.35 99.88 98.69 99.43 100
6 99.44 98.83 99.67 96.87 95.54 100 100
7 96.57 91.56 95.59 84.42 92.79 93.53 98.97
8 92.39 81.19 90.77 76.26 79.74 92.12 97.81
9 90.66 87.12 89.20 72.14 83.51 83.63 99.33
10 92.61 63.22 96.77 54.83 60.41 64.09 100
11 95.27 91.56 94.32 85.53 93.54 90.13 99.53
12 91.28 90.43 93.82 95.48 86.89 91.93 99.61
13 96.81 90.09 97.33 71.93 92.28 88.42 97.19
14 100 98.56 100 100 98.81 100 100
15 99.75 97.66 100 99.74 99.78 99.15 100

OA(%) 95.28 87.76 96.19 83.90 88.03 89.98 99.92
AA(%) 96.15 89.65 96.80 85.86 89.68 94.65 99.94
k100 94.87 86.76 95.88 82.57 87.03 89.13 99.91

TableIII:  The classification accuracy (%) of different methods on the MUUFL dataset.
No. CCRNet CoupledCNN MHST EndNet HCT FusAtNet DMTCANet
1 84.67 87.15 91.81 86.15 90.87 90.75 91.99
2 84.19 86.78 85.70 82.67 86.09 74.20 86.43
3 67.13 75.34 72.78 77.18 73.63 64.45 86.02
4 96.12 96.17 89.81 92.30 96.24 87.49 96.54
5 83.78 89.76 88.29 91.86 82.88 87.22 88.62
6 99.12 98.85 100 98.73 100 100 100
7 86.45 90.92 93.05 88.96 91.98 92.54 94.58
8 95.23 96.88 95.52 92.99 89.11 93.06 94.09
9 67.14 68.98 82.19 81.94 75.06 71.77 83.89
10 83.78 97.18 92.68 93.94 78.79 82.11 90.91
11 98.57 99.11 99.04 99.16 91.60 97.61 99.16

OA(%) 83.12 88.43 88.71 86.55 86.94 85.45 90.72
AA(%) 86.08 90.34 90.08 89.63 86.93 85.56 92.02
k100 77.95 85.07 85.32 82.53 82.95 81.15 87.81

Fig.3:  Classification maps of various methods for the Houston2013 dataset. (a) Ground truth, (b) CCRNet, (c) CoupledCNN, (d) MHST, (e) 

EndNet, (f) HCT, (g) FusAtNet, (h) DMTCANet.
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Fig.4:  Classification maps of various methods for the MUUFL dataset. (a) Ground truth, (b) CCRNet, (c) CoupledCNN, (d) MHST, (e) End-

Net, (f) HCT, (g) FusAtNet, (h) DMTCANet.

3.4 Ablation Study

Table IV shows the ablation study results on the Houston2013 dataset. The framework comprises four key components: the Conv3D 

module for HSI, the Conv2D module for HSI and LiDAR, the Tokenizers for both modalities, and the TCA fusion encoder.

The results indicate that removing the Conv2D module caused the lowest classification accuracy, highlighting its importance. Remov-

ing the Conv3D module led to a slight accuracy increase, showing the importance of multi-scale feature extraction. When both Conv2D and 

Conv3D were removed and replaced with ViT’s Patch Embedding(PE), the accuracy reached 95.21%. Removing the TCA fusion encoder 

resulted in an OA of 98.57%, slightly lower than the optimal, but still underscoring the significance of the TCA encoder in enhancing perfor-

mance. These findings validate the framework’s effectiveness and the importance of each component.

Table IV:  Ablation study of the proposed model components on the Houston2013 dataset.
Cases 1 2 3 4 5 6 7

Component

Conv3D - √ - √ √ √ √
Conv2D √ - - √ √ √ √

Tokenization √ √ PE PE - √ √
TCA √ √ √ √ - - √

Indicators
OA(%) 92.45 88.23 95.21 96.23 94.33 98.57 99.92
AA(%) 89.07 65.78 93.89 94.78 93.45 98.43 99.94
k100 91.26 74.61 93.43 95.02 92.41 99.21 99.91

4. Conclusion
In this work, we introduced an innovative framework called DMTCANet, which integrates a dual-branch multi-scale CNN with a TCA 

fusion mechanism. The multi-scale CNN extracts features at various scales, enhancing the receptive field to capture information at both local 

and global scales. The TCA mechanism improves the correlation between HSI and LiDAR data, addressing the challenge of limited infor-

mation exchange. The experimental outcomes indicated that DMTCANet achieved substantial performance enhancements on three publicly 

available datasets. Compared to existing approaches, DMTCANet demonstrated superior performance, thus validating its effectiveness and 

advantages in joint classification tasks.
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